Real-time embedded frame work for sEMG skeletal muscle force estimation and LQG control algorithms for smart upper extremity prostheses

نویسندگان

  • Chandrasekhar Potluri
  • Madhavi Anugolu
  • D. Subbaram Naidu
  • Marco P. Schoen
  • Steve C. Chiu
چکیده

This paper presents a real-time embedded framework for finger force control of upper extremity prostheses. The proposed system is based on the hypothesis that models describing the finger force and surface Electromyographic (sEMG) signal relationships of healthy subjects can be applied to amputees. An identification/estimation scheme is applied to the collected sEMG and finger force signals in order to infer dynamical models relating the two. A LQG control law is proposed based on this estimation scheme in order to control finger forces of upper extremity prostheses. For the force estimation, filtered sEMG signals from a sensor array and finger force data of a healthy subject are acquired. Real-time estimation and control are implemented using a PIC32MX360F512L microcontroller. In this paper, a novel fusion technique, the Optimized Linear Model Fusion Algorithm (OLMFA) is developed for estimating the skeletal muscle force from the sEMG sensor array in real-time. The sEMG signal is rectified and filtered using a Half-Gaussian filter, and fed to the OLMFA based Multiple Input Single Output (MISO) force model. This MISO system provides the estimated finger force as reference input to the upper extremity prostheses in real-time. A LQG controller is designed to control the finger force of the prostheses utilizing the force estimate from the OLMFA as a reference. Both the OLMFA and the LQG control scheme are prototyped on the embedded framework for testing of the real-time performance. The proposed embedded framework features rate partitioning and UART interface for performance validation and troubleshooting. The OLMFA based force estimation yields a real-time performance of 85.6% mean correlation and 20.4% mean relative error with a standard deviation of 71.6 and 71.5 respectively for 18 test subject’s k-fold cross validation data. The LQG control algorithm yields a real-time performance of 91.6% mean correlation and 9.2% mean relative error with a standard deviation of 71.4 and 71.3 respectively. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control...

متن کامل

Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses

The electromyographic signal is the electrical manifestation of the neuromuscular activation associated with a contracting muscle. The surface electromyographic (SEMG) signal represents the current generated by ionic flow across the membrane of the muscle fibers that propagates through the intervening tissues to reach the detection surface of an electrode located over skin (De Luca (2006)). The...

متن کامل

Robust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work

The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...

متن کامل

Latent Factors Limiting the Performance of sEMG-Interfaces

Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. ...

متن کامل

Estimation of Upper Limb Joint Angle Using Surface EMG Signal

In the development of robot-assisted rehabilitation systems for upper limb rehabilitation therapy, human electromyogram (EMG) is widely used due to its ability to detect the user intended motion. EMG is one kind of biological signal that can be recorded to evaluate the performance of skeletal muscles by means of a sensor electrode. Based on recorded EMG signals, user intended motion could be ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2015